skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Yuefan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We enhance the mobile sequential recommendation (MSR) model and address some critical issues in existing formulations by proposing three new forms of the MSR from a multi-user perspective. The multi-user MSR (MMSR) model searches optimal routes for multiple drivers at different locations while disallowing overlapping routes to be recommended. To enrich the properties of pick-up points in the problem formulation, we additionally consider the pick-up capacity as an important feature, leading to the following two modified forms of the MMSR: MMSR-m and MMSR-d. The MMSR-m sets a maximum pick-up capacity for all urban areas, while the MMSR-d allows the pick-up capacity to vary at different locations. We develop a parallel framework based on the simulated annealing to numerically solve the MMSR problem series. Also, a push-point method is introduced to improve our algorithms further for the MMSR-m and the MMSR-d, which can handle the route optimization in more practical ways. Our results on both real-world and synthetic data confirmed the superiority of our problem formulation and solutions under more demanding practical scenarios over several published benchmarks. 
    more » « less